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Abstract. Natural scene classification is a challenging open problem in
computer vision. We present a novel spatial pyramid representation
scheme for recognizing scene category. Initially, each image is partitioned
into sub-blocks, applying the technology of superpixel lattices segmenta-
tion according to a boosted edge learning boundary map, which makes the
objects in each sub-block have the integrity—that is, the features in each
sub-block are relatively consistent. Then, we extract the dense scale-
invariant feature transform features of the images and form the contextual
visual feature description. Finally, the image representations are per-
formed by following the methodology of spatial pyramid. The feature
descriptions we present include both local structural information and glo-
bal spatial structural information; therefore, they are more discriminative
for scene classification. Experiments demonstrate that the classification
rate can achieve about 87.13% on a set of 15 categories of complex
scenes. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI:
10.1117/1.OE.51.1.017201]
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1 Introduction
Scene classification and automatic labeling of an image have
drawn increasing attention and been widely applied to
various tasks in multiple disciplines. Nonetheless, under-
standing the meanings or contents of images remains a
challenging problem in machine intelligence and statistical
learning.

Bosch et al.1 summarized the scene classification strate-
gies in recent decades. The basic idea is to take the whole
image as an entity and represent the characteristics of the
scenes relying on low-level features (e.g., color, texture, gra-
dient, etc.).2–4 Oliva proposed a type of global feature called
“Gist”5–8 that employs a visual attention model to combine
global color, intensity, and orientation features to represent a
scene. This approach may be sufficient for separating scenes
with significant differences in global properties. However,
scenes with similar global characteristics (e.g., bedroom vs.
living room, forest vs. open country) are not easily differen-
tiated, so the global features may not be discriminative
enough. Thus, the strategies of features extracted from
local regions have been proposed for scene classification.9,10

The bag-of-words (BOW) scheme11,12 can be interpreted
as a sparse sampling of high-level statistics of local features
distribution. High-level statistics are suited for detecting the

local distinctive patterns in an image, which are thought to
be especially important for capturing the characteristics of
solid objects. Bosch et al.1 pointed out that visual words
joined with different techniques, such as pLSA and LDA,
can achieve better results for scene classification.13–15 How-
ever, these methods disregard the spatial information of the
scenes. To overcome this drawback, Lazebnik et al.16 pro-
posed a successful approach called spatial pyramid matching
(SPM). This technique calculates the distribution of visual
words at multi-spatial resolutions to form a spatial pyramid
representation of an image. It employs the pyramid match-
ing strategy17 to measure the similarity between pyramids.
However, each image is subdivided into rectangular blocks
regularly so that an integral object in an image may be split
into two sections or more. As a result, the features in the
same block have poor consistency.

Recently, contextual information has been employed for
object recognition or object detection.18–20 The methods
based on contextual information achieved better recognition
performance than those based solely on local features. The
idea of using context has therefore been proposed for the
image segmentation or labeling task.21 It provides a novel
way of combining contextual information to improve region
labeling. There are also some attempts to label regions in
the scene images for scene categorization.9,10,22 However,
the region labeling is limited in these methods. In fact, an
image of a scene consists of a number of objects, and the0091-3286/2012/$25.00 © 2012 SPIE
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categories of objects in images of the same category vary
significantly. Thus, aiming at the problem of scene classifi-
cation, many unsupervised methods focus on learning the
components of images for scene classification.23–25 Qin
and Yung26 focused on learning the components and cor-
responding contexts from the scene images in a totally un-
supervised manner by extending the traditional visual words
learning procedure. The method achieved considerable
recognition success.

Unsupervised over-segmentation of an image into super-
pixels is a common preprocessing step for image parsing
algorithms. It has achieved attractive progress in superpixel
over-segmentation technology.27,28 Moore29,30 proposed a
novel algorithm called superpixel lattices segmentation. The
segmentation method produces superpixels that are forced to
conform to a superpixel lattice. So, all pixels within the same
superpixel block will belong to the same real-world object,
ideally. The superpixel lattices segmentation algorithm div-
ides one image into a series of superpixels based on the
boundary map and boundary cost map.31

Although the feature descriptors proposed by Qin and
Yung26 contain local spatial information in some degree,
they lack global spatial information. Moreover, it is impos-
sible to meet the computation cost and storage requirement
with the scale level increasing. Considering these shortcom-
ings, we just extract features from three scales ðs ¼ 1; 2; 3Þ to
learn the visual words and follow the strategy of spatial pyr-
amid matching (SPM) to add the global spatial information.
Considering the consistency of features in the same block, in
this paper, we apply the technology of the superpixel lattices
segmentation to obtain the multi-resolutions instead of the
regular rectangular segmentation in Ref. 16. The proposed
method merges the pyramid description based on the tech-
nology of superpixel lattices segmentation and contextual
information so that it contains local gradient information,
local structural information, and global spatial information.
In addition, our approach ensures the integrity of the sub-
blocks and the consistency of the features in the same block.

2 Approach

2.1 Superpixel Spatial Pyramid Blocks

The input data of superpixel lattices segmentation is a bound-
ary map.29,30 This is a two-dimensional array containing a
measure of the probability that a semantically meaningful
boundary is present between two pixels. Among several
choices for a boundary map, Dollar et al.31 provided an effi-
cient algorithm to generate the fast boosted edge learning
(BEL) boundary map using a boosted classifier to learn nat-
ural boundary. We follow the BEL maps shown in the second
column of each group in Fig. 1.

The formation of superpixel lattices is incremental. Initi-
ally, the image is split vertically and horizontally based on its
corresponding BEL map. Each path (the red line in Fig. 1)
splits the image into two parts; thus, two paths (one vertical
and one horizontal) cumulatively produce four superpixels
(the third column of each group in Fig. 1). Next, we add
two vertical paths and two horizontal paths, respectively,
to generate 16 superpixels (the last column of each group
in Fig. 1). The main problem at each stage is how to
form each path and how to ensure these constraints are main-
tained. The details are mentioned in Ref. 29. We emphasize

the attractive property of the technique that each vertical or
horizontal path guarantees to follow the boundary. This is the
key difference from the algorithm proposed in Ref. 16, which
constrainedly divides the image into rectangle blocks, as
shown in Fig. 2. In this paper we just take the tall building
example, for instance in the following narrative. The super-
pixel lattices segmentation keeps the integrity of the blocks
and the consistency of the features in the same block.

2.2 Feature Extraction

The comparative evaluation in Ref. 23 has shown that a
dense image representation works better for scene classifica-
tion. So, in this paper we use a dense regular grid instead of
interest points at different scales s ¼ 1; 2; · · · S, which
means multiscale gridspacing and patchsizes. Scale-invariant
feature transform (SIFT) features are extracted from every
16 × 16 patch on a grid of step size 8 at scale 1. The corre-
sponding patch sizes are 32 × 32 on a grid of step size 16 at
scale 2 and 64 × 64 on a grid of step size 32 at scale 3,
respectively. To obtain the contextual information, we com-
bine the SIFT features from the coarser scale and neighbor-
hood regions to construct a new description of the region of
interest (ROI). Note that the features at the highest scale have
no corresponding contextual features. The concept of con-
structing contextual features is illustrated in Fig. 3.

Fig. 1 Examples for superpixel lattices of each category. The first
column shows original images, the second column the corresponding
BEL maps, the third column 2 × 2 superpixel lattices, and the last
column 4 × 4 superpixel lattices.
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Let f s denote the SIFT features of ROI at scale s, f sþ1, the
SIFT features of the region having the same center as the ROI
but at a coarser scale level and f sn having the SIFT features
of ROI neighbors at scale s. The contextual descriptor of the
ROI is built by:

f ¼ ½f s;wC × f sþ1;wn × f sn�; (1)

where wC and wN are the weight parameters that control the
significance of the features from the coarser level and the
neighbor regions, respectively, in order to balance the discri-
minative power and generalization ability of the contextual
information. For all the training images, denote the contex-
tual visual features at scale s as ff 1; f 2; · · · ; f ng, where n is
the number of features from all the training images. PCA
(principle component analysis) is used to reduce the dimen-
sion, and the covariance matrix is formed as:

Es ¼
1

n

Xn
k¼1

f k · ðf kÞT . (2)

Then, SVD (singular value decomposition) is performed by:

Es ¼ UsMsUT
s ; (3)

where Ms is a diagonal matrix with descending singular
values, i.e., m1 ≥ m2 ≥ · · ·≥ md. d represents the dimen-
sion of the contextual visual features. In this paper,
d ¼ 768ð128þ 128þ 128 × 4Þ. Us ¼ fv1; v2; · · · ; vdg is
formed with the eigenvectors fvigi¼1;2; · · · ;d corresponding
to singular values fmigi¼1;2; · · · ;d. In our experiments Eq. 4
is used to select the reduced dimension d1 of the features,
and T is the decision parameter. T ¼ 0.95 means that
0.95% information is preserved in terms of the mean-square
error, which controls d1 to avoid losing the excessive useful
information.

min
d1

Xd1
k¼1

mk ≥ T ·
Xd
k¼1

mk . (4)

The transformation matrix Ps for reducing dimension is
formulated by taking the first d1 rows of UT

s , i.e.,
Ps ¼ fv1; v2; · · · ; vd1g. Each lower-dimensional feature vec-
tor y is generated from higher-dimensional feature vector f as
follows:

y ¼ Psf: (5)

K-means cluster method is applied to create visual words
for each scene category at every scale after generating
descriptors. The vocabulary at scale s is defined as
Vs ¼ fvs1; vs2; · · · ; vsCg ¼ fvscgC, where C is the number of
scene categories and vsc is the vocabulary of the category
c at scale s. The vocabulary vsc is learned by the features
fys

1ðcÞ; y
s
2ðcÞ; y

s
3ðcÞ · · · g of training images belonging to cate-

gory c at scale s.

2.3 Feature Space

Denote l ¼ 0; 1; · · · ; L as the pyramid levels in this paper.
The results in Ref. 16 indicate that the performance of the
entire L ¼ 3 pyramid remains essentially identical to that
of the L ¼ 2 pyramid. In this paper we chose L ¼ 2. Figure 4
shows an example of a three-level pyramid based on super-
pixel lattices segmentation. Level 0 denotes the original
image, level 1 the 2 × 2 grid, and level 2 the 4 × 4 grid.
The total number of blocks of an image is 24 (1þ 4þ 16).

The procedure of spatial pyramid representation contains
five steps at each scale:

a. Map each contextual feature ys at scale s to its corre-
sponding visual word in the vocabulary Vs.

b. Count the number of words falling into each block to
form the representation of the block expressed by the

Fig. 2 Example of regular lattices of the tall building category.

Fig. 3 The schema of the contextual features at scale s.
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histogram as fhlig, l ¼ 0; · · · ;L; i ¼ 0; · · · ; 22l. The
image representation at each level can be constructed
by hls ¼ ½hl1; · · · ; hl22l �, l ¼ 0; · · · ; L.

c. Weight each histogram hl by Eq. (6) and normalize it
with the total number of features of the image:

whl ¼
�

1
2L
; l ¼ 0

1
2L−lþ1 ; l ≠ 0.

(6)

d. The image representation at scale s is formed as:

hIs ¼ ½h0s ; h1s ; · · · ; hLs �. (7)

e. Iterate the steps a) to d) until s ¼ S − 1The final repre-
sentation of an image is produced as:

HI ¼ ½hI1; hI2; · · · ; hIS−1� 0. (8)

3 Experimental Results

3.1 Data Sets and Setup

We evaluate the classification performance on three data sets.
Data set 1 contains eight category scenes (coast, forest,
mountain, open country, highway, inside city, tall building,
and street) provided by Oliva and Torralba.32 Li Fei-fei
et al.23 extended Data Set 1 by adding five other categories
(bedroom, kitchen, living room, office, and suburb) to form
Data Set 2. Data Set 3 is a further extension of Data Set 2
by adding two other categories (industrial and store) per-
formed by Lazebnik et al.16 Each scene category contains
210 to 410 images. The average size of the images is around
300 × 250 pixels.

All processing is performed by using gray scale images.
We follow standard experimental protocols applied in pre-
vious tasks. In each experiment 100 images are randomly
chosen from each category for training, and the rest for test-
ing. The final result is reported as the average of 10 indivi-
dual runs, wherein the training and testing samples are
replaced randomly.

In our experiments we set the scales s ¼ 1; 2; 3 and the
size of each category vocabulary K ¼ 100 at each scale s.
The levels of superpixel spatial pyramid take l ¼ 0; 1; 2.
All of the experiments are based on the same parameters.
Finally, we train the Library for Support Vector Machines
(LIBSVM)33 for the scene recognition.

We perform four different image representations as
follows:

SPSLC: Spatial pyramid matching on superpixel lattices
with contextual information

SPMC: Spatial pyramid matching with contextual infor-
mation

SPSL: Spatial pyramid matching on superpixel lattices
without contextual information

SPM:16 Spatial pyramid matching without contextual
information

Performance comparisons between SPSLC and SPMC
and between SPSL and SPM, respectively, have been made
to demonstrate the superiority of superpixel lattices. Also,
performance comparisons between SPSLC and SPSL and
between SPMC and SPM, respectively, have been made to
show the advantage of contextual information. Furthermore,
we compared our SPSLC method with three other typi-
cal methods, hierarchical Gaussianization (HG),34 global
Gaussian (GG),35 and contextual visual words(CVW).26

3.2 Results

We observe the experimental results for two aspects: the
effectiveness of superpixel lattices or contextual information.
Table 1 illustrates the performance of the four representations
(SPSLC, SPMC, SPSL, and SPM) based on Data Set 1. On
one hand, SPSLC and SPSL both apply superpixel lattices
for spatial information. SPSLC achieves the best classifica-
tion rate of 94.50% at level 0, 1. The corresponding confu-
sion table is displayed in Fig. 5. In fact, the four methods
obtain the best results at level 0, 1 shown in Table 1.
SPMC applies the regular lattices scheme and obtains a
rate of 91.25% at level 0, 1, lower than SPSLC. Both
SPSLC and SPMC integrate the contextual information.
To validate the advantage of superpixel lattices, we also

Fig. 4 The three-level superpixel lattices spatial pyramid.

Table 1 Classification result for Data Set 1.

level SPSLC SPMC SPSL SPM16 CVW26

0 89.50% 89.50% 86.75% 86.75% 90.30%

1 93.75% 90.35% 89.00% 86.90%

2 91.46% 89.00% 88.00% 84.00%

0, 1 94.50% 91.25% 89.75% 87.70%

0, 1, 2 92.75% 90.00% 87.25% 87.00%
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compared SPSL with SPM without the contextual informa-
tion. Experiments demonstrate that SPSL (89.75%) outper-
forms SPM (87.70%). On the other hand, SPSLC and SPMC
both integrate contextual information for local structural
information. With superpixel lattices, SPSLC (94.50%) is
better than SPSL (89.75%), and without superpixel lattices
SPMC (91.25%) is better than SPM (87.70%). Experiments
validate the superiority of contextual information. At last, the
comparisons with CVW26 are performed. We can see from
Table 1 that our SPSLC outperforms CVW by 4.2%.

Table 2 and Table 3 display the performance of the four
representations based on Data Set 2 and Data Set 3. The
conclusions from Table 2 and Table 3 are the same as
from Table 1: 1.the methods applying superpixel lattices

are superior to ones without superpixel lattices, and 2.the
methods using contextual information are superior to ones
without contextual information. Table 2 and Table 3
shows that SPSLC is better than SPMC and that SPSL is
better than SPM, which demonstrates the superiority of
superpixel lattices. Also, SPSLC is better than SPSL, and
SPMC is better than SPM, which proves the effectiveness
of contextual information. In addition, SPSLC (88.85%)
at level 0, 1 outperforms CVW (87.63%) from Table 2,
and SPSLC (87.13%) at level 0, 1 outperforms HG
(85.20%), GG (86.10%), and CVW (85.16%) from Table 3.

Data Set 2 and Data Set 3 contain some indoor categories,
which increases the difficulty of classification. As Quattoni
et al. pointed out in Ref. 36, it is more difficult for indoor
scene classification than outdoors. The corresponding confu-
sion tables of SPSLC based on Data Set 2 and Data Set 3 are
shown in Fig. 6 and Fig. 7, respectively. It is clear that the
classification rate of each indoor scene is lower than out-
doors, which matches the conclusion proposed by Quattoni.36

To learn the influence of our approach for the outdoors,
and indoors, respectively, we split Data Set 3 into 10 cate-
gories of outdoor scenes (note that we take the industrial
category that contains only outdoor scenes) and five cate-
gories of indoor scenes. The results are shown in Table 4
and Table 5, respectively. Figure 8 and Fig. 9 show the
corresponding confusion rates of SPSLC at level 0, 1. For
the outdoors, the rate increases only 2.27% by SPSLC
from level 0 to level 1. However, for the indoors, the rate
increases 4.44% by SPSLC from level 0 to level 1. The
other three methods (SPMC, SPSL, and SPM) reveal similar
phenomena.

4 Discussions
We discuss our approach for the following four aspects:
advantages of superpixel lattices, advantages of contextual
information, the selection of the levels in a spatial pyramid
scheme, and the performance of SPSLC in the outdoors and
indoors.

As mentioned above, to obtain the global spatial informa-
tion, SPM16 method is proposed to form a spatial pyramid
representation of an image. However, it used regular lattices
to divide images into rectangular blocks regularly so that an
integral object in one image may be split into two sections or
more. As a result, the features in the same sub-block have
poor consistency. To overcome this problem, we apply the
pyramid representation on superpixel lattices instead of
regular lattices. The superpixel lattices scheme keeps the

Table 2 Classification result for Data Set 2.

level SPSLC SPMC SPSL SPM16 CVW26

0 83.13% 83.13% 77.90% 77.90% 87.63%

1 87.16% 84.06% 83.15% 80.24%

2 85.54% 83.37% 82.46% 77.20%

0, 1 88.85% 86.00% 84.77% 81.46%

0, 1, 2 87.07% 84.25% 82.00% 79.00%

Table 3 Classification results for Data Set 3.

level SPSLC SPMC SPSL SPM16 HG34 GG35 CVW26

0 82.93% 82.93% 76.28% 76.28% 85.20% 86.10% 85.16%

1 85.90% 83.67% 80.80% 78.13%

2 83.46% 81.87% 79.07% 76.75%

0, 1 87.13% 84.26% 82.00% 79.50%

0, 1, 2 85.18% 82.53% 78.40% 76.92%

Fig. 5 The confusion table of Data Set 1.
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integrity of the sub-blocks and the consistency of the features
in the same sub-block. We test our SPSLC by five data sets,
and the performances are shown in Tables 1 to 5. The super-
iority of superpixel lattices is demonstrated by two aspects:
with contextual information and without contextual informa-
tion. Comparing the two methods (SPSLC and SPMC) using

contextual information, we can see from Tables 1 to 5 that
SPSLC outperforms SPMC. For the two methods (SPSL and
SPM) without contextual information, SPSL is better than
SPM. The comparisons indicate the effectiveness of super-
pixel lattices.

To keep the local structural information, contextual infor-
mation is integrated in the feature description. We also vali-
date the effectiveness of contextual information by two
aspects: with superpixel lattices and without them. First,
for the two methods (SPSLC and SPSL) using superpixel

Table 4 Classification results for 10 outdoors categories of 15
scenes.

level SPSLC SPMC SPLS SPM16

0 91.15% 91.15% 86.92% 86.75%

1 93,42% 92.38% 89.00% 88.07%

2 93.00% 91.59% 88.00% 87.00%

0, 1 94.20% 92.94% 89.75% 88.94%

0, 1, 2 93.40% 92.00% 87.25% 87.51%

Table 5 Classification results for five indoors categories of 15
scenes.

level SPSLC SPMC SPLS SPM16

0 71.36% 71.36% 67.00% 67.00%

1 76.80% 74.95% 71.20% 70.25%

2 75.27% 72.86% 71.20% 69.75%

0, 1 78.20% 75.64% 73.20% 71.35%

0, 1, 2 76.44% 73.37% 69.20% 68.50%

Fig. 9 The confusion table of five indoors categories.

Fig. 6 The confusion table of Data Set 2.

Fig. 7 The confusion table of Data Set 3.

Fig. 8 The confusion table of 10 outdoors categories.
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lattices, SPSLC applies contextual information, but SPSL
does not. It is clear from Tables 1 to 5 that SPSLC is superior
to SPSL. Second, for the two methods (SPMC and SPM)
without superpixel lattices, SPMC integrates contextual
information, but SPM does not. Experimental results show
that SPMC is better than SPM. The comparisons demon-
strate the effectiveness of contextual information.

To add the spatial structural information, in this paper spa-
tial pyramid representation strategy is used for image repre-
sentation. We expect the results can be better at level 2 than
either level 0 or level 1 as the results mentioned in Ref. 16.
Tables 1 to 5 show that the results improve from level 0 to
level 1. We take it for granted that the performance can also
increase from level 1 to level 2. However, it is not true. The
reason may be that the higher level of the pyramid is over-
subdivided with individual bins yielding too few matches. It
implies that the higher level of the pyramid restricts the struc-
ture of each category scene and only fits the scenes with a
single structure. But, in fact, the scenes belonging to the
same category with intra-class variations have no fixed struc-
tures. In Tables 1 to 5, the performance is best at level 0, 1.
This indicates the main advantage of the spatial pyramid
representation: it combines multiple resolutions in a prin-
cipled fashion, so it is resistant to failures at individual levels.

Indoor scenes recognition is a challenging open problem
in computer visions. Whereas most outdoor scenes can be
well characterized by global properties, indoor scenes can-
not. There is a wide range of both local and global discrimi-
native information for most indoor scenes. Moreover, indoor
scenes (e.g., kitchen, living room, etc.) exhibit much varia-
bility across the different exemplars within each category. It
is not true for outdoor scenes (e.g., street, tall building, etc.).
Therefore, both outdoor and indoor scenes need a model
that can exploit the local and global discriminative informa-
tion to solve the recognition task. Fortunately, our approach,
SPSLC, could meet these requirements. Considering the dif-
ference between indoor and outdoor scenes, we tested the
advantage of SPSLC on a 10-category outdoors data set
and a five-category indoors data set provided by DataSet
3. The results, shown in Table 4 and Table 5, illustrate
that SPSLC improves the performance of classification
both for outdoor scenes and indoor scenes. In addition,
we can conclude from Table 4 and Table 5 that the gain
of the performance indoors is higher than outdoors from
level 0 to level 1 or from level 0 to level 0, 1, so that our
approach improves the performance more for indoors than
outdoors.

5 Conclusions
This paper proposed a new image representation method
using spatial pyramid representation strategy on superpixel
lattices with contextual information. Experimental results
demonstrate that it has powerful distinctiveness on the
scene classification task due to two reasons: one is the super-
iority of the superpixel lattices segmentation technology
because it guarantees the integrity of the sub-blocks and
the consistency of the features in the same sub-block; the
other is that the feature descriptions contain both the local
and global structural information.

Even so, our scheme has a limitation in the stage of super-
pixel lattices segmentation because not all the scenes can be
split into sub-blocks following our expectation, which affects

the performance of scene classification. Despite this limita-
tion, our method outperforms other state-of-the-art methods
on scene classification. Our future work will be to study
further how to improve the superpixel lattices segmentation
and how to improve the classification performance of the
indoor scenes.
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